Formes quadratiques

Formes quadratiques


Ce cours s'adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d'une façon indissociable l'étude des concepts bilinéaires des formes quadratiques avec l'étude matricielle et géométrique. C'est un cours illustré par des exemples aléatoires et des exercices avec plusieurs réponses possibles ou des avertissements selon l'erreur ainsi que des exercices à étapes et utilisant des bases de données importantes.

I Formes quadratiques et formes polaires associées

II Orthogonalité

III Décomposition en carrés d'une forme quadratique

IV Formes quadratiques sur un espace euclidien

V Application: Coniques du plan affine euclidien

Vous trouverez ici une version pdf : docquadratic.pdf
Ce cours a été préparé dans le cadre du projet européen TEMPUS CD-JEP-31147-2003, intitulé "Mathématiques Assistées à l'Ordinateur et Modélisation" et qui entre dans la rubrique Multimédias dirigée par Marie-Claude David et Bernadette Perrin-Riou, enseignants-chercheurs à l'université Paris-Sud.

VI Tous les exercices WIMS utilisés

I Formes quadratiques et formes polaires associées

Formes quadratiques → I Formes quadratiques et formes polaires associées

I-1 Définitions

I-1-1 Forme quadratique, Forme polaire

Définition

On appelle forme quadratique de E toute application q:E telle que
  1. λ,xE,q(λx)=λ 2q(x).
  2. l'application
    b:E×E (x,y) 12[q(x+y)q(x)q(y)]
    est une forme bilinéaire symétrique.
La forme bilinéaire b est appelée la forme polaire de q.

Remarque

Si q est une forme quadratique de forme polaire b, alors
xE,q(x)=b(x,x).

Exemple


  • Soit E= n muni de son produit scalaire usuel noté <,>. L'application
    q:E x <x,x>
    est une forme quadratique sur E.
  • Soit E= 4, l'application
    q:E x x 2+y 2+z 2t 2
    est une forme quadratique bien connue en mécanique quantique.

Exemple
Soit